Chronology Current Month Current Thread Current Date
[Year List] [Month List (current year)] [Date Index] [Thread Index] [Thread Prev] [Thread Next] [Date Prev] [Date Next]

Re: [Phys-l] question about Bernoulli



Maybe people misunderstand what I'm looking for. The conversation below gets halfway there. My comments interspersed.

Bill



On Nov 23, 2010, at 9:22 AM, John Denker wrote:

On 11/23/2010 08:27 AM, LaMontagne, Bob wrote:

the component of velocity of the molecules perpendicular to the
pipe walls - was it reduced?

Yes.

This is a major step. Certainly if the component of velocity of the molecules perpendicular to the pipe walls is reduced, that would explain a lower pressure. Any lay person paying attention could understand that. It makes sense because if all we concentrate on in the Bernoulli equation is pressure and velocity, we must assume that height and density are constant.

and by what mechanism was it reduced?

Particle/particle collisions.

Particle-particle collisions cause this. Great. Is it possible to look at what happens to molecules, as an aggregate, as they enter a constriction? Is there some mechanism, non-mathematical, that explains why the component of velocity of these molecules perpendicular to the walls is reduced? It's not a question about individual molecules, but a question about what happens to all of them, in a statistical sense. We can look at individual collisions among molecules and between molecules and a constricting container, subject to a pressure difference, that might result in the molecules as a whole in the narrow part of the container having a reduced velocity component perpendicular to the walls.

I understand the energy arguments. I understand that pressure gradients must result in differences in velocity. I understand that there must be a pressure difference for the acceleration of the molecules, which absolutely means the pressure is lower in one part of the flow. Just hoping for a picture of what's happening to these molecules, individually and/or collectively, that results in a lesser perpendicular velocity component in the are of flow where they're moving faster. And here I'm assuming that a lower perpendicular velocity component is the answer. In my original post, I stated various explanations for Bernoulli, two at least that included a change in density (in one case locally and in one case globally). I would love to be able to rule out the density argument, at least, but that's why I'm asking everyone here to look at it.



Each collision can be visualized in terms of points on a sphere
in six-dimensional phase space. Ignoring the mass for simplicity,
we have:
v1x^2 + v1y^2 + v1z^2 + v2x^2 + v2y^2 + v2z^2 = E = constant

Each collision will cause the system to random-walk on the
sphere. If every collision were one-dimensional (i.e. zero
impact parameter) we would not have a random walk, but since
the impact parameters are random we do. The energy will soon
be distributed over all the accessible states.
_______________________________________________
Forum for Physics Educators
Phys-l@carnot.physics.buffalo.edu
https://carnot.physics.buffalo.edu/mailman/listinfo/phys-l