Chronology Current Month Current Thread Current Date
[Year List] [Month List (current year)] [Date Index] [Thread Index] [Thread Prev] [Thread Next] [Date Prev] [Date Next]

Re: Ohne die Arbeit, part 3 (Long & wordy)



John Mallinckrodt wrote:

On Sat, 15 Nov 1997, Bob Sciamanda wrote:

The use of potential energy functions will usually be restricted to
. . .
As a very useful example consider the
dumbbell system of two masses interacting through a central force
F(|R|); R is the vector locating mass 1 from mass 2 and F(|R|) depends
only on its magnitude. This could be the model for a variety of
physical systems, from a hydrogen molecule to a binary star system. We
are interested in the time behavior of the vector R, ie.; the motion of
M1 relative to M2, assuming the dumbbell system is isolated from other
forces.

R2 R1

M2<-----------------------CM----------------------------------------------------->M1

------------------------------------------------------------------------------->
R
The difficulty is that if we define M1 as our system, the force on it
depends not only on its location, but also on the location of M2, which
will not stand still for us. However:
. . .
Using Eq#2, m*R'' = F(|R|) * R / |R| , where m = (M1*M2)/(M1+M2), the
"reduced" mass. (Eq #4)

Eq (4) describes the behavior of the vector R, which locates M1 from
(the moving) M2, and says that its behavior is the same as that of a
particle of mass m under the influence of the central force F(|R|) of a
FIXED source. Obviously, the MET can use a potential energy function to
describe the behavior of R in Eq #4.

Bob,

All of the above is true, of course; it follows the exposition found in
any intermediate level textbook on mechanics. But I don't agree with the
conclusion in your last sentence because I don't see what it has to do
with the MET (or, as it is more commonly known, the "pseudowork-energy
theorem," PET.) The MET/PET talks *only* about the effects of *external*
forces on the motion of the *CM* of a system. Of course, the extremely
restricted case of an isolated system of two point particles interacting
only via a separation-dependent attractive or repulsive force is
isomorphic to the equally restricted case of a single particle subject
only to a radius-dependent central force. And since the latter case *is*
restricted enough to be usefully described by your extended MET (EMET),
one can use the results from the EMET analysis to describe the former
case. But when the MET/PET *itself* is applied to the two body system what
one finds is no "pseudowork" and no change in CMKE--i.e., 0 = 0, hardly an
illuminating result.
. . .

Read more carefully, John. You are correct that the MET exploits the
(pseudo)work of only external forces. But in this example, I have
chosen
my system as only the mass M1, so that F(|R|) is an external force.
I am not interested in the motion of the CM of the dumbell, only in the
behavior
of R(t), the motion of M1 relative to M2.

I realize that your work explicitly breaches the defined system and
exploits the
work done by all forces (including internals). I praise this as a very
useful
work, however at least for the present it is inaccessible to, and
beyond,
an introductory course. I am illustrating what can be done with the MET
(which gets along without taking any cognizance of internal forces), a
statement
(under other names or nameless) already at home (but misunderstood)in
introductory
courses, at least as applied to a particle.

(Your article abhors potential function representations of external
forces because
of a (subconscious) reification of potential energy and the subsequent
concern about
where it is to be located; Cf your footnote #14.)

John
-----------------------------------------------------------------
A. John Mallinckrodt http://www.intranet.csupomona.edu/~ajm
Professor of Physics mailto:ajmallinckro@csupomona.edu
Physics Department voice:909-869-4054
Cal Poly Pomona fax:909-869-5090
Pomona, CA 91768-4031 office:Building 8, Room 223

--
-Bob

Bob Sciamanda sciamanda@edinboro.edu
Dept of Physics sciamanda@worldnet.att.net
Edinboro Univ of PA http://www.edinboro.edu/~sciamanda/home.html
Edinboro, PA (814)838-7185