Chronology Current Month Current Thread Current Date
[Year List] [Month List (current year)] [Date Index] [Thread Index] [Thread Prev] [Thread Next] [Date Prev] [Date Next]

Re: [Phys-L] electricity in the atmosphere




Ken,

Real scientists do not form a single hypothesis at all. It is often presented
as a guess. Instead, scientists investigate a phenomena through observation
and experiment. There is no need to guess the outcome of an experiment, since
you just do it and see what happens. Guessing the outcome can introduce bias.

A hypothesis is best described as a possible outcome and a good scientist
knows which ones are more likely than others. But picking one in advance has
no benefit, unless there is some safety issue that as to be accounted for in
the experimental design.

The phony scientific method, as you point out, makes it seem like a single
person does all of the things: observation, hypothesis, testing, refinement of
experiment, theory/law. In reality, the scientific enterprise is most often
carried out by a large number of people over a long period of time.

Also, there are experimentalists and there are theorists.

It's important for students to understand that theorists create models that
are testable against the universe. The models compete to determine which is
correct. The model that survives is the theory. It's important for students
to understand that a theory is as close to truth as we get and that with new
methods and information that we may need to alter it or replace it.

We much better serve our students, particularly at the high school and
university level by fully explaining how science works. Including, how
scientific data is evaluated, understanding statistics, etc.

David


On Sat, February 10, 2018 2:45 pm, Ken Caviness wrote:
Great stuff!


Yes, real life is never as simple as our explanations: actual history is far
more complicated than the textbook presentations, the real universe is a lot
more complicated than our scientific theories, and especially the way science
is done in the real world has dimensions not even hinted at in the
stereotypical presentation of the scientific method.

But! -- I would not call the streamlined, simplified explanation of the
scientific method "phony". It's extremely simplified, but still helpful to
emphasize fundamental features involved in the scientific enterprise. I
routinely point out to my students that I personally can't be involved (by
lack of aptitude, experience, and/or interest) in all aspects of the
enterprise, but somewhere these factors are involved.

KC


Ken Caviness
Physics
Southern Adventist University


Sent from my HTC


----- Reply message -----
From: "David Marx via Phys-l" <phys-l@mail.phys-l.org>
To: "Phys-L@Phys-L.org" <Phys-L@Phys-L.org>
Cc: "David Marx" <marx@phy.ilstu.edu>
Subject: [Phys-L] electricity in the atmosphere
Date: Sat, Feb 10, 2018 2:51 PM



Thanks, John, for highlighting the NOVA episode, At the Edge of Space. To me
it is one of their best in showing how scientists actually do science. None
of this phony "scientific method" stuff. I have used the full episode when
I
taught our lowest level general education physics class. I have students watch
it outside of class and write a short analysis (not a summary) and answer a
set of questions about it.

My daughter is taking an intro geology course and they require the students
to know the phony scientific method: hypothesis-theory-law. I can't believe
this stuff is still taught at the university level.




On Sat, February 10, 2018 9:35 am, John Denker via Phys-l wrote:

On 02/09/2018 06:47 PM, Derek McKenzie wrote:



I particularly appreciate the number estimates, as well as the idea of
modeling the phenomenon as a spherical capacitor.

For those who want to know more about the model.....



*) Magnificent reference:
"Electricity in the Atmosphere"
http://www.feynmanlectures.caltech.edu/II_09.html



If you haven't recently read the Feynman lectures cover-to-cover,
I strongly recommend it.



*) Decent introduction at the qualitative level (no equations):
http://www.lightningsafety.noaa.gov/science/scienceintro.shtml



*) The books by Uman are useful but even the latest "revised"
edition is 50 years out of date. I haven't seen the 700-page tome by Rakov
and Uman but I gather it is more up-to-date.



*) Sprites in the upper atmosphere were predicted in 1921
by C.T.R. Wilson but not observed until 1989, and are still a hot topic of
research:
https://www.youtube.com/watch?v=vSCwiQWzMa0



Longer version:
https://www.youtube.com/watch?v=Tfryt3TILx0



That NOVA episode gives a realistic portrayal of scientists
doing their job. In particular, ask your students how they would feel if
they spent years putting together a team and building equipment, then when
the conditions are right staying up all night and spending an additional
$100,000.00 to carry
out the mission, and coming back with ... nothing! If you don't know what
that feels like, you don't know what it's like to be a scientist.

Most remarkably, NOVA did not leave out the painful part of
the story.

A few nights later, good conditions come around again, so
they carry out the mission again, and come back with ... data. Gorgeous,
highly informative data.

Additional points to tell students:
-- Not all physics was done in the 1600s. There are still
interesting unanswered questions. -- Physics is mostly a team sport; you
don't have to be a lone genius like Galileo or Newton or Einstein to make a
contribution. -- A lot of it requires building fancy instruments and
exploiting modern technology. -- OTOH it usually doesn't require CERN-sized
teams or CERN-sized instruments. Sometimes a Gulfstream-V full of fancy
cameras will do nicely. -- There is joy at the end of the rainbow, but you
have to tolerate a lot of risk and pain before you get there. This requires
strength of character. Technical skill is not enough. -- It must be
emphasized that exploring blind alleys is part of the cost of obtaining
information. A mission that comes back with no data of the desired kind is
not a mistake and not a waste. Scientists take calculated risks, carefully
balancing risk versus reward. Don't take any more risk than necessary, or
any less. https://www.av8n.com/physics/research-maze.htm



_______________________________________________
Forum for Physics Educators
Phys-l@mail.phys-l.org
http://www.phys-l.org/mailman/listinfo/phys-l





_______________________________________________
Forum for Physics Educators
Phys-l@mail.phys-l.org
http://www.phys-l.org/mailman/listinfo/phys-l
_______________________________________________
Forum for Physics Educators
Phys-l@mail.phys-l.org
http://www.phys-l.org/mailman/listinfo/phys-l