Chronology |
Current Month |
Current Thread |
Current Date |

[Year List] [Month List (current year)] | [Date Index] [Thread Index] | [Thread Prev] [Thread Next] | [Date Prev] [Date Next] |

*From*: David Bowman <David_Bowman@georgetowncollege.edu>*Date*: Thu, 21 Jan 2010 17:34:40 -0500

Regarding Bob S's objection:

. . . L must also be independent of the direction of v, and is

therefore a function only of its magnitude, i.e. v^2."

Ergo: L = L(v^2) .

Why not :

Ergo: L=L( | v | ) ?

No generality is lost here. Note that |v| is a function of v^2. In particular |v| = sqrt(v^2). So any real function of |v| is also a real function of v^2 as well (because a function of a function is a function).

David Bowman

**Follow-Ups**:**Re: [Phys-l] Landau on Lagrangian***From:*"Bob Sciamanda" <treborsci@verizon.net>

**References**:**[Phys-l] Landau on Lagrangian***From:*Stefan Jeglinski <jeglin@4pi.com>

**Re: [Phys-l] Landau on Lagrangian***From:*"Bob Sciamanda" <treborsci@verizon.net>

- Prev by Date:
**Re: [Phys-l] Landau on Lagrangian** - Next by Date:
**Re: [Phys-l] Landau on Lagrangian** - Previous by thread:
**Re: [Phys-l] Landau on Lagrangian** - Next by thread:
**Re: [Phys-l] Landau on Lagrangian** - Index(es):